入門物理学・第6回

本日の『入門物理学』。前回説明した運動方程式について,物体が2体以上あるときの解き方の具体的なコツをサッと紹介。今日のメインテーマは保存則。様々な保存則の使い方の前に,保存則の背景には対称性という自然の持つ「美しさ」があることを話した。
対称性という美しさをどうやって定量化するか,多角形や円を引き合いに説明したあたりはだいぶ抽象的で疲れが見えてきたので,ちょっと脇道にそれて休憩。これまでの一般向け講座での経験談を話した。小学生向けの講座で体験した,講座の最後に保護者向けに話した松陰先生の言葉に子供達がその日一番集中しとても驚いた話を紹介。ブラックホールの数式を解きほぐす話もそうだが,難しい難しくないを超えて,本物は子供にも伝わるのではないかと語った。
続けて「教育とは種を蒔くことである」「わからないだろうから言わないではなく,いつかわかるときがくるかもしれないから言っておく」「種を根付かせるための信頼関係」という話,「良いことで目立つ1割でも,悪いことで目立つ1割でもなく,普通の8割に気を配る必要がある」ことも話した。そのためのコツは「何ができないかではなく,どこまではできるようになったかに注目すること」であるということも併せて力説。
ラスト30分は宇宙の始まりという「時間の果て」に時間並進対称性および力学的エネルギー保存則がどう絡むかという話…に繋がる前振りとして,宇宙の空間に関するからスタート。紀元前に月までの距離をどうやって測ったかを紹介。最後は宇宙の始まりについてどんな説があるか説明して(いや,煙に巻いてというべきか)講義終了。
今日は抽象的な話も途中に挟んだので,あまり物理っぽくなかったかもしれない。物理を受験で使った学生だと保存則の背後にある対称性の話は「これまでやってきたことの背後には深い話がある」ということで新鮮な感じがあると思うが,受験で「地味な」物理をやっていないとしっくりくるまでには自分の中で熟成するのを少し待つ必要があるだろう。「物理はモノの見方の一つを与える」という,物理の実利的側面とはまた違ったところを伝えたいので,この辺りもっと研究する価値がありそうだ。根性論にならない,種の根付かせ方の研究を。もちろん,本当にそれを伝える必要があるのかどうかも含めて。

0コメント

  • 1000 / 1000

Kobayashi Shinpei / 小林晋平 Website

Quantum Gravity Black Holes The Early Universe Metamaterials Mathematical Physics & Shapes